

Home Search Collections Journals About Contact us My IOPscience

The first-order Raman spectra of OsO2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 1487

(http://iopscience.iop.org/0953-8984/15/9/312)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.119 The article was downloaded on 19/05/2010 at 06:38

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) 1487-1494

The first-order Raman spectra of OsO2

P C Yen¹, R S Chen¹, Y S Huang^{1,4}, C T Chia², R H Chen² and K K Tiong³

¹ Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China

² Department of Physics, National Taiwan Normal University, Taipei 117, Taiwan,

Republic of China

³ Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China

Received 6 November 2002, in final form 22 January 2003 Published 24 February 2003 Online at stacks.iop.org/JPhysCM/15/1487

Abstract

The first-order Raman spectra of the transition metal dioxide OsO_2 with tetragonal rutile structure have been measured at room temperature. A linearly polarized argon laser light source and completely oriented single-crystal samples have made possible unambiguous determination of the four allowed Raman-active phonon modes. Comparison is made with results for other rutile materials.

1. Introduction

The family of transition metal dioxide compounds with rutile-type structure possesses an interesting variety of electrical and magnetic properties [1]. Conductive transition metal dioxides with rutile-type structure show potential applications in substituting for the metals currently used in conductive lines which serve to connect components of semiconductor and electrode materials in ferroelectric memory devices [2–4]. Osmium dioxide, OsO₂, belongs to this family of compounds; little is known of its fundamental properties. This may be due in part to the highly toxic nature of the readily formed and volatile tetroxide of the material [5].

This report presents the first-order Raman spectra of OsO_2 . To the best of our knowledge only one such report on the phonon frequencies of the four Raman-active modes in OsO_2 exists [6]. The existing literature merely lists a Raman spectrum from a small crystal of OsO_2 , oriented so as to display all four Raman-active lines. In the present study, the group symmetry restraints of the Raman-active phonons and the Raman selection rules are discussed. The results are then utilized to classify the experimentally observed polarized Raman spectra of the four phonon modes. Comparisons are made with results for other metal dioxide [7–13] and metal fluoride [10, 14] compounds, which possess similar rutile-type structure.

⁴ Author to whom any correspondence should be addressed.

0953-8984/03/091487+08\$30.00 © 2003 IOP Publishing Ltd Printed in the UK

1487

Figure 1. A photograph of an OsO_2 crystal showing the (110) and (111) planes together with the polarization axes.

2. Experimental details

Single crystals of OsO_2 with well-developed faces were grown in our laboratory by the chemical transport method [15]. OsO₂ was grown by the oxidation of high-purity osmium with excess NaClO₃ or NaBrO₃ in an evacuated, sealed silica tube. The volume of the tube was about 100 cm^3 after sealing, and the excess NaClO₃ or NaBrO₃ was sufficient to complete oxidation of Os to OsO₂. The processes of NaClO₃ or NaBrO₃ decomposition and Os oxidation were accomplished simultaneously by slowly heating the silica tube and its contents to 300 °C over 48 h and subsequently firing at 650 °C for an additional 48 h. This treatment resulted in an apparent complete decomposition of the chlorate or bromate with the formation of golden OsO_2 powder in one end of the tube. The tube was then transferred to a horizontal furnace and positioned so as to provide a temperature gradient along the length of the tube, which is about 20 cm long. The charge of OsO2 in one end was maintained at 920 °C, and the opposite end of the tube was held at 900 °C for 240 h. The transported crystals were about 3-5 mm across a polyhedral face. The x-ray powder diffraction analysis was performed to ascertain that tetragonal rutile structure had been obtained. The crystals were x-ray pre-oriented with respect to the directions and polarizations of the incident and scattered light. A representative crystal showing the as-grown (110) and (111) planes together with the prescribed polarization configurations is illustrated in figure 1.

Raman measurements were made on as-grown (110) and (111) faces in the backscattering geometry utilizing a DILOR XY-800 triple-grating Raman spectrometer equipped with a liquidnitrogen-cooled CCD and an OLYMPUS BH-2 microscope. The 5145 Å line of an argon ion laser was used as the excitation source, and was focused on the sample surface with a 100× objective. The focusing spot size is about 1 μ m in diameter and the laser power density is estimated to be about 1 W cm⁻². Prior to the measurement, the system was calibrated by means of the 520 cm⁻¹ Raman peak of a Si single crystal. The spectra exhibited approximately a 0.5 cm⁻¹ resolution with the slit width of 30 μ m. For frequency less than 250 cm⁻¹, an argon purge was used to suppress the N₂ lines.

3. Symmetry analysis

 OsO_2 has the tetragonal rutile structure belonging to the space group D_{4h}^{14} with two OsO_2 molecules per unit cell as shown in figure 2. The cations are located at sites with D_{2h} symmetry

Figure 2. A schematic representation for a unit cell of OsO₂.

and the anions occupy sites with C_{2v} symmetry. The Os ions are surrounded by six oxygen ions at the corners of a slightly distorted octahedron, while the three Os ions coordinating each of the oxygen ions lie in a plane at the corners of a nearly equilateral triangle. There are four Raman-active modes with symmetries A_{1g} , B_{1g} , B_{2g} , and E_g [15]. The first three are singlets and the last is a doublet.

Corresponding to each Raman-active mode, there is a scattering tensor α having a distinctive symmetry. For the four allowed Raman transitions in materials of D_{4h}^{14} space group, these tensors have the form [16]

$$\begin{aligned} \alpha(\mathbf{A}_{1g}) &= \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}, \qquad \alpha(\mathbf{B}_{1g}) = \begin{pmatrix} c & 0 & 0 \\ 0 & -c & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \alpha(\mathbf{B}_{2g}) = \begin{pmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \alpha(\mathbf{E}_{g}) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e \\ 0 & e & 0 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ e & 0 & 0 \end{pmatrix}. \end{aligned}$$
(1)

The displacements of atoms associated with the four Raman-active vibrations are shown in figure 3 [9]. To examine experimentally a given component α_{ij} , the geometry is arranged such that the incident light is polarized in the *i*-direction while only the scattered light of *j*-polarization is observed.

A full classification of the four Raman-active modes may be accomplished as follows. The geometric configurations for the various axes used in this experiment are denoted as

$$\begin{aligned} x' &= \frac{1}{\sqrt{2}} (1\overline{10}) & x'' &= \frac{1}{\sqrt{2}} (1\overline{10}) \\ y' &= \frac{1}{\sqrt{2}} (110) & y'' &= \frac{1}{\sqrt{6}} (11\overline{2}) \\ z' &= (001) & z'' &= \frac{1}{\sqrt{3}} (111). \end{aligned}$$
(2)

Figure 3. The displacements of atoms of OsO_2 , viewed along the *c*-axis, associated with the four first-order Raman-active modes of rutile structure.

Table 1. Relative Raman intensities for the B_{1g} , E_g , A_{1g} , and B_{2g} phonon modes for the various polarization configurations used in this experiment.

		Phonon mode					
Polarization configuration	B _{1g}	Eg	A _{1g}	B _{2g}			
		(110) face					
$\alpha_{x'x'}$	0	0	a^2	d^2			
$\alpha_{x'z'}$	0	e^2	0	0			
$\alpha_{z'z'}$	0	0	b^2	0			
	(111) face						
$\alpha_{x''x''}$	0	0	a^2	d^2			
$\alpha_{x''y''}$	$(1/3)c^2$	$(2/3)e^2$	0	0			
$\alpha_{y''y''}$	0	$(8/9)e^2$	$(1/9)(a+2b)^2$	$(1/9)d^2$			

4. Results and discussion

Plotted in figures 4(a)–(c) are the Raman spectra observed for scattering from the as-grown (110) surface of single-crystal OsO₂ for the cases of $\alpha_{x'x'}$ -, $\alpha_{x'z'}$ -, and $\alpha_{z'z'}$ -configurations, respectively. Figure 4(a) shows two Raman peaks at 685 and 726 cm⁻¹ whereas figures 4(b) and (c) show only one peak each at 544 and 685 cm⁻¹, respectively. Mode assignment with the aid of table 1 shows that these features correspond to the E_g mode (544 cm⁻¹), the A_{1g} mode (685 cm⁻¹), and the B_{2g} phonon (726 cm⁻¹). Our identification of the peak positions of the three lines agreed extremely well with that of [6], which is so far the only report on the material.

In figures 5(a)–(c) we display the Raman spectra seen for scattering from the (111) face for the polarization arrangements $\alpha_{x''x''}$, $\alpha_{x''y''}$, and $\alpha_{y''y''}$, respectively. Note that in figure 5(b), in addition to a strong peak at 544 cm⁻¹, a very sharp weak feature at 184 cm⁻¹ is observed. This is the B_{1g} phonon mode and the peak position agrees very well with that of [6] where it is determined as being at 187 cm⁻¹. This is the only configuration where the B_{1g} line is

Figure 4. The Raman spectra observed for scattering from the (110) surface of single-crystal OsO₂. (a) The $\alpha_{x'x'}$ -configuration showing the A_{1g} and B_{2g} phonons at 685 and 726 cm⁻¹, respectively. (b) The $\alpha_{x'z'}$ -configuration showing the E_g phonon at 544 cm⁻¹. (c) The $\alpha_{z'z'}$ -configuration showing the A_{1g} phonon at 685 cm⁻¹.

allowed (see table 1). The polarization configurations of the other three Raman signatures at locations 544, 685, and 726 cm⁻¹ lead to a consistent symmetry assignment of these structures as indicated by table 1 and with that given by figures 4(a)–(c). It is also worth noting that the relative intensity ratios of B_{2g} to A_{1g} modes for $\alpha_{x'x'}$ - and $\alpha_{x''x''}$ -configurations are consistent with that given by table 1, where $I(B_{2g})/I(A_{1g}) = d^2/a^2 \approx 3.4$.

As shown in figures 4 and 5, the Raman spectra of OsO_2 exhibit strong lines of A_{1g} , E_g symmetries, a high-frequency line of B_{2g} symmetry, and a very sharp and weak low-frequency B_{1g} mode. A careful search for the B_{1g} mode is necessary, since the intensity of this mode is smaller than that of the E_g mode by a factor of 50 or more. The frequency and symmetry assignments for the four Raman-active phonons of OsO_2 are listed in table 2. For completeness and comparison, the table also summarizes the previously reported results for a number of other metal dioxides (OsO_2 [6], RuO_2 [7, 8], IrO_2 [9], TiO_2 [10], SnO_2 [11], and CrO_2 [12]), GeO_2 [13], and metal fluorides (MgF_2 [10], ZnF_2 [10], FeF_2 [10], MnF_2 [10], and CoF_2 [14]) with the rutile structure.

The Raman spectra of OsO_2 are quite sharp, with very little background. The observed full width at half-maximum (FWHM) at room temperature is about 2.4, 6.2, 8.3, and 14.4 cm⁻¹

Figure 5. The Raman spectra observed for scattering from the (111) surface of single-crystal OsO₂. (a) The $\alpha_{x''x''}$ -configuration showing the A_{1g} and B_{2g} phonons at 685 and 726 cm⁻¹, respectively. (b) The $\alpha_{x''y''}$ -configuration showing the B_{1g} and E_g phonons at 184 and 544 cm⁻¹, respectively. (c) The $\alpha_{y''y''}$ -configuration showing the E_g, A_{1g}, and B_{2g} phonons at 544, 685, and 726 cm⁻¹, respectively.

for B_{1g} , A_{1g} , E_g , and B_{2g} modes, respectively. These values are comparable to those for the insulating rutile materials and unlike those for metallic VO₂ [18] (rutile structure), for which only a strong, broad band near 550 cm⁻¹ has been observed. It is also most appropriate to compare the Raman spectra of OsO₂ to those of the isostructural dioxide compounds of Ir, Ru, and Cr. The B_{2g} mode of these metal dioxides is comparatively soft as compared to the corresponding phonon modes of the insulating metal oxides TiO₂ [10] and SnO₂ [11]. The relative intensities of the B_{2g} mode in the metallic materials OsO₂ (see figures 4 and 5), IrO₂, RuO₂, and CrO₂ are considerably greater compared to those for the transparent rutile materials [9, 10, 12]. Srivastava and Chase [12] have attributed this behaviour in CrO₂ to a plasma-edge-induced resonance enhancement. In the B_{2g} mode, all of the nearest-neighbour oxygen atoms move toward one cation and away from the other inequivalent cation in the unit cell. This mode is likely to be resonance enhanced by the plasma edge present in the metallic-like oxides because of the charge density fluctuations produced near the cation sites by such oxygen displacements. Table 2 shows that OsO₂ has the hardest B_{1g} mode of all the rutile materials investigated to date. The similarity of the Raman-active phonons for OsO₂ and

Table 2. Raman-active phonons in a number of materials with the rutile structure.

		Mode (cm^{-1})				
Material	B _{1g}	Eg	A_{1g}	B _{2g}		
OsO ₂ ^a	184	544	685	726		
OsO ₂ [6]	187	545	685	727		
RuO ₂ [7]	97	528	646	716		
RuO ₂ [8]	165	526	646	715		
IrO ₂ [9]	145	561	752	728		
TiO ₂ [10]	143	447	612	826		
SnO ₂ [11]	123	475	634	776		
CrO ₂ [12]		470	575	700		
GeO ₂ [13]	97	680	702	870		
MgF ₂ [10]	92	295	410	515		
ZnF ₂ [10]	70	253	350	522		
FeF ₂ [10]	73	257	340	496		
MnF ₂ [10]	61	247	341	476		
CoF2 ^b [14]	68	246	366	494		

^a Present work.

^b Measured at 77 K.

RuO₂ is quite striking—except for the value for the soft B_{1g} mode from [7]. The two reports, references [7] and [8], on RuO₂ differed significantly only as regards the location of the soft B_{1g} mode (97 cm⁻¹ for [7] and 165 cm⁻¹ for [8]). It is speculated that such a discrepancy may result from slight oxygen deficiency [8] (and references within) in the samples used in [7]. In any case, the higher frequency value of 165 cm⁻¹ seems to be more consistent with the values for B_{1g} modes for the other metal dioxides with rutile structure [9–11] and most significantly with the value of 184 cm⁻¹ (187 cm⁻¹ from [6]) for OsO₂. The reason for the close similarity is that OsO₂ and RuO₂ are structurally identical, with four d electrons per cation. The relatively weak oscillator strength for the B_{1g} mode, as shown consistently by our results and the previous reports [6–9], indicates an inherent physical character for rutile structure crystals belonging to the D_{4h}^{4h} space group.

5. Summary

In summary, the polarized first-order Raman spectra have been measured at room temperature for single crystals of metallic OsO_2 . The four Raman-active phonons predicted by group theory have been observed and classified. Comparison is made with results for other rutile materials. The B_{2g} mode is softer compared to the corresponding phonons in the insulating material oxides, while OsO_2 shows the hardest B_{1g} mode of all the rutile materials investigated to date.

Acknowledgment

The authors acknowledge the support of the National Science Council of the Republic of China.

References

- [1] Mattheiss L F 1976 Phys. Rev. B 13 2433
- [2] Kolawa E, So F C T, Pan E T S and Nicolet M A 1987 Appl. Phys. Lett. 50 854

- [3] Nakamura T, Nakao Y, Kamisawa A and Takasu H 1994 Appl. Phys. Lett. 65 1522
- [4] Al-Shareef H N, Bellur K R, Kingon A I and Auciell O 1995 Appl. Phys. Lett. 66 239
- [5] Balfour W J and Ram R S 1984 J. Mol. Spectrosc. 105 360
- [6] Weber W H and Merlin R 2000 Raman Scattering in Materials Science (Berlin: Springer)
- [7] Huang Y S and Pollak F H 1982 Solid State Commun. 43 921
- [8] Rosenblum S S, Weber W H and Chamberland B L 1997 Phys. Rev. B 56 529
- [9] Huang Y S, Lin S S, Huang C R, Lee M C, Dann T E and Chien F Z 1989 Solid State Commun. 70 517
- [10] Porto S P S, Fleury P A and Damen T C 1967 Phys. Rev. 154 522
- [11] Peercy P S and Morosin B 1973 Phys. Rev. B 7 2779
- [12] Srivastava R and Chase L L 1972 Solid State Commun. 11 349
- [13] Scott J F 1970 Phys. Rev. B 1 3488
- [14] MacFarlane R M and Ushioda S 1970 Solid State Commun. 8 1081
- [15] Schäfer H 1964 Chemical Transport Reactions (New York: Academic)
- [16] Loudon R 1964 Adv. Phys. 13 423
- [17] Loudon R 1963 Proc. Phys. Soc. 82 393
- [18] Srivastava R and Chase L L 1971 Phys. Rev. Lett. 27 727